来源 | 中国电机工程学报,中国知网

作者 | 王磊1,魏晓光1*,唐新灵1,林仲康1,赵志斌2,李学宝2

单位 | 1. 北京智慧能源研究院;2. 华北电力大学新能源电力系统国家重点实验室

原位 | DOI:
10.13334/j.0258-8013.pcsee.230136


摘要:半导体技术的进步使得芯片的尺寸得以不断缩小,倒逼着封装技术的发展和进步,也由此产生了各种各样的封装 形式。当前功率器件的设计和发展具有低电感、高散热和高绝缘能力的属性特征,器件封装上呈现出模块化、多功能化 和体积紧凑化的发展趋势。为实现封装器件低电感设计,器件封装结构更加紧凑,而芯片电压等级和封装模块的功率密度持续提高,给封装绝缘和器件散热带来挑战。在有限的封 装空间内,如何把芯片的耗散热及时高效的释放到外界环境中以降低芯片结温及器件内部各封装材料的工作温度,已成 为当前功率器件封装设计阶段需要考虑的重要问题之一。本文聚焦于功率器件封装结构的散热方面,针对功率半导体器件在散热路径方面的结构设计进行归纳总结。通过对国内外 功率器件封装结构设计的综述,梳理了功率器件封装结构设计过程中在散热方面的考虑及封装散热特点,并根据功率器 件散热特点对功率器件封装结构类型进行了分类。最后,基于降低封装结构散热热阻、提高器件散热能力的目的,从高导热封装材料和连接工艺、芯片面接触连接、增加散热路径 以及缩短散热路程四个方面对功率器件封装结构设计在散热方面未来的发展趋势进行了展望。


关键词:功率器件;封装结构;散热路径


00

引言

半导体技术的进步极大地促进了电力电子器件的发展和应用。过去几十年里,在摩尔定律的 “魔咒”下,半导体芯片尺寸不断减小,使得在同样的空间体积内可以集成更多的芯片,实现更多的功能和更强大的处理能力,为进一步提高功率密度提供了可能。


另一方面,芯片尺寸的缩小也增加了芯片散热热阻,降低了热容,使得芯片结温升高,结温波动更加明显,影响功率模块的可靠性。


功率半导体作为电力电子系统的核心组成部分,已经广泛应用到生活、交通、电力、工业控制、航空航天、舰船等领域。功率器件正呈现出高频、高压、高功率以及高温的发展特点。


同时这些特征也对功率器件封装提出了巨大挑战,需要考虑到封装结构、封装材料和封装工艺的可行性和适配性,这些涉及到器件的封装电感、芯片散热和电气绝缘等问题,倘若这些不能够很好的得到解决,就会对器件的热学、电学、机械性能和可靠性产生极大的影响,甚至导致器件的失效。


尤其是在目前功率器件高电压、大电流和封装体积紧凑化的发展背景下,封装器件的散热问题已变得尤为突出且更具挑战性。芯片产生的热量会影响载流子迁移率而降低器件性能。


此外,高温也会增加封装不同材料间因热膨胀系数不匹配造成的热应力,这将会严重降低器件的可靠性及工作寿命。结温过高将导致器件发生灾难性故障及封装材料因热疲劳和高温加速导致材料退化而造成的故障问题。


因此,在非常有限的封装空间内,及时高效的把芯片的耗散热排放到外界环境中以降低芯片结温及器件内部各封装材料的温度,已成为未来功率器件封装设计过程中需要考虑的重要课题。


伴随着电网规模越来越大,电压等级越来越高,电力系统朝着更加智能化方向发展,高压、大功率和高开关速度要求功率器件承担的功能也更加多样化,工作环境更加恶劣,在此背景下,除芯片自身需具有较高的处理能力外,器件封装结构已成为限制器件整体性能的关键。


而传统的封装或受到材料性能的限制或因其自身结构设计不能适应高压大电流高开关速度应用所带来的高温和高散热要求。为保证器件在高压高功率工况下的安全稳定运行,开发结构紧凑、设计简单和高效散热的新型功率器件,成为未来电力系统用功率器件发展的必然要求。


本文聚焦于功率器件封装结构的散热方面,通过对国内外功率器件封装结构设计进行综述,总结了功率器件封装结构设计过程中在散热方面的考虑及其结构散热设计特点,并依据功率器件散热特 点对器件封装结构进行归纳和分类。


最后,基于对功率器件封装结构热设计的梳理总结,从提高器件封装散热性能的视角,对功率器件封装材料、连接工艺和封装结构设计方面的发展趋势进行了展望。


01

功率器件封装结构散热设计原则


针对功率器件的封装结构,国内外研究机构和企业在结构设计方面进行了大量的理论研究和开 发实践,多种结构封装设计理念被国内外研究机构提出并研究,一些结构设计方案已成功应用在商用功率器件上。


功率器件自身的属性及其特殊的服役环境决定了封装器件内部总是受到电场、热以及应力等多种场效应相互耦合的综合作用。功率器件的结构设计,应首先要满足电气绝缘要求,在此基础上兼顾结构设计对封装散热、芯片及封装各部件间受力等其他方面的影响。


从器件散热的角度,封装结构设计应当遵循散热路径低热阻、尽可能多散热路径和传热路径上的接触面积尽可能大的原则。这就要求在设计之初,就应考虑到封装材料的选择、散热路径的设计、散热路径上各部件接触界面的面积等。但这些不可避免的增加了封装设计和工艺实现的难度,一种功率器件的封装实践往往是考虑多种因素的折中。


从目前国内外对于功率器件的研究和开发现状来看,具备耐高温、多散热路径和大面积连接的封装特征是未来功率器件封装的发展趋势,也是满足未来高压、大功率器件工作性能要求的必然选择。


02

封装结构散热类型

以传统半导体 Si 芯片和单面散热封装为代表的常规封装器件获得了良好的发展和应用,技术上发展相对比较成熟。但随着对更高电压等级更高功率密度需求的不断增长,传统应用于 Si 器件的封装技术已不能够满足现有发展和应用的要,目前传统 Si 基芯片的最高结温不超过 175℃,温度循环的范围最大不超过 200℃。


相比 Si 器件,SiC 器件在导通损耗、开关频率和具有高温运行能力方面具有明显的优势,最高理论工作结温更是高达 600℃。若采用现有 Si 基封装技术,那么以 SiC 为代表的宽禁带半导体将无法充分发挥其高温运行的能力。SiC 宽禁带半导体功率器件更高的开关频率,可以降低无源器件的重量,占用的封装体积也更小,因此可以提高功率器件的功率密度,同时 SiC 器件具有更高的热导率,可以更高效的把芯片耗散热排出。


然而,SiC 器件越来越高的电压等级和开关速度也给器件封装带来巨大的挑战。目前现有封装技术的不适配是摆在高压 SiC 器件应用面前的一道屏障。SiC 芯片尺寸小,厚度更薄,而电压等级提高,需要特别关注封装中涉及芯片、基板以及输出端子等薄弱点的电气绝缘问题,如 10 kV SiC MOSFET 的芯片厚度仅有 100 μm,平均电场强度达到 100 kV/mm,而对于 1.7 kV 的 Si IGBT,芯片厚度为 210 μm,而平均电场强度只有 8.1 kV/mm。高电压等级的 SiC 器件电场强度达到 Si 器件的 10 倍以上。


因此,针对高压功率器件的封装需要特殊的设计以满足高压绝缘的要求,如需要开发在高电场环境下仍具有高电压绝缘强度和稳定性的绝缘灌封材料,以隔离水汽、污染物等外界环境。另外,针对灌封过程存在气泡的问题,现有灌封工艺还需要进一步完善。


SiC 功率器件可以承受更高的工作结温,降低对外部冷却器件的要求,缩小封装器件的体积,使得封装器件更加轻质高效。然而,缺乏适合的高温封装技术体系成为限制 SiC 器件充分发挥其潜力的最大因素,特别是对于高压大电流应用需求的系统。


对于传统硅基功率器件,单热管理部分就占到整个器件封装系统成本的三分之一以上。但随着 SiC 技术的进步,SiC 器件的高温运行能力所带来的优势足以弥补现阶段 SiC 的成本问题。目前商用的 SiC 肖特基二极管受限于传统塑料封装形式,其额定工作结温上限仅能达到 175℃。


现有 SiC 器件的封装仍主要采用焊接封装,考虑到芯片绝缘和隔离外界环境的目的,封装模块内部灌封有完全覆盖芯片表面的热导率较低的硅凝胶,硅凝胶上层为空气,该封装形式也使得这种从上向下的热传导成为芯片产生热量的几乎唯一的散热通道。为了充分利用 SiC 器件高结温的优势,发挥 SiC 器件的潜力,开发新的便于芯片散热的封装结构,为芯片封装提供高效的散热路径,达到降低芯片结温,提升器件整体性能的目的,非常有必要改进现有的传统功率器件封装技术,开发新型功率器件封装结构。由此,通过增加封装器件的散热路径来提高器 件散热能力的方法也就很自然的被提出。


基于高压大功率器件封装结构散热方面的考虑,除了在封装结构设计过程中,采用高热导率耐高温封装材料和高温焊料,以及时有效的将芯片的热量传递给其他层封装材料之外,还需要有尽可能多的散热路径,如将芯片上表面的键合线取消,利用芯片上表面的散热通路等。


近年来,取消键合线的功率器件封装设计研究与实践也频频见于各种文献资料。这也代表着器件封装的发展趋势。同时需要指出的是,取消键合线封装不仅仅对于芯片封装散热友好,对于封装的可靠性也具有优势。开发体积紧凑、结构设计简单且具有高效散热能力的封装结构成为未来功率半导体器件封装性能提升的关键。


通过对现有功率器件封装方面文献的总结,从器件封装结构散热路径的角度可以将功率器件分为单面散热器件、双面散热器件和多面散热器件。


2.1 封装结构单面散热


2.1.1 键合线类单面散热


键合线连接封装技术发展较为成熟,在功率器件封装中具有较长的应用历史。键合线类连接封装既包含采用铝线、铜线、铝带、铜带等金属导线或者金属带进行芯片与陶瓷基板以及芯片功率电极与输出端子连接的封装,也包括不采用金属线或者金属带连接,而与前者在芯片连接上采用相同原理进行芯片功率电极的连接和引出,实现相同功能的封装形式。

图1 两种采用相同封装设计不同尺寸芯片的键合线连接封装模块

如图 1(a)和图 1(b)所示分别为 Cree 与 Powerex 公司基于 Powerex 公司的同等电压电流等级的硅基 IGBT 模块合作开发的 1200 V/100 A SiC 键合线连接封装模块,图(a)半桥单个开关采用 5个 25 A 的 SiC MOSFET 芯片和 3 个 50 A 的 SiC JBS 二极管芯片并联封装,达到 100 A 的电流等级。图(b)在单个开关侧采用 2个 80 A SiC MOSFET 芯片和 2个 50 A SiC JBS 二极管芯片并联封装,达到 100 A 的电流等级。


两个版本的模块采用相同的底板、终端和外壳设计。两种版本中,SiC MOSFET 芯片电流等级升高,芯片尺寸变大,虽然两个版本中采用的二极管电流等级相同,但二极管芯片的尺寸不一样。


为了提高模块散热性能,两种模块均使用氮化铝陶瓷 DBC 基板,比氧化铝陶瓷 DBC 基板的导热系数有明显提高(AlN 的导热系数为 210 W/(m·K),Al2O3 的导热系数为 20 W/(m·K))。与(a)版设计相比,(b) 版模块简化了芯片和键合线布局,降低了封装寄生电阻、电感和导通损耗。


SiC 的导热性能比硅高得多(SiC 的热导率为 3.7 W/(cm·K),而硅的热导率为 1.3 W/(cm·K)),其导热性能取决于 SiC 芯片的面积,由于 SiC 的比导通电阻较低,SiC 的芯片面积通常较小,因此,相比相同封装设计的硅 IGBT 模块,热阻抗降低 37%,散热性能得到明显改善。

图2 (a) 10 kV/120 A SiC 半桥 MOSFET 模块,(b) 12 kV/10 A SiC n-IGBT 模块和 (c) 双基板堆叠键合线连接 10 kV SiC MOSFET 模块

图 2(a)所示为键合线连接的 10 kV/120 A 半桥模块,该模块有上下两个开关,每个开关有 12个 SiC MOSFET 芯片和 6个 SiC JBS 二极管芯片,总电流为 120 A。图 2(b)所示为在 12 kV/10 A SiC IGBT 两端反并联两个串联的 10 kV/10 A SiC JBS 二极管模块。


从封装结构上看,图 2(a)、图 2(b)与 图 1 中器件没有实质不同,均为芯片背面通过焊料焊接在 DBC 基板上,DBC 基板连接到金属底板,芯片正面电极采用键合线连接,并在芯片正面灌封密封剂对芯片和键合线进行保护。图 2(c)采用了热循环能力更好的表面镀银直接键合铝(DBA)陶瓷基板,陶瓷采用高导热 AlN。


两个 DBA 基板堆叠有效降低了陶瓷、灌封剂和金属铝三结合点处的峰值电场。采用具有低孔隙率、高热导率且烧结后具有高熔点的大面积烧结银工艺将两个 DBA基板连接在一起。通过纳米银膏将芯片烧结到基板上,芯片正面电极采用铝键合线连接。


最后将 NuSil R-2188 灌封到芯片表面,隔离水分和辐射等环境因素,提高芯片表面的电气绝缘。双 DBA堆叠的电气绝缘和峰值电场得到保障,同时可以对堆叠基板的下底面直接进行冷却,从而取消底板。


尽管基板堆叠会一定程度上增加芯片的散热热阻,但基板底部直接冷却和取消厚度较大的底板所带来的热阻改善 弥补了基板堆叠导致的热阻增加,芯片结温仍明显降低。在单个 MOSFET芯片功率损失为 200 W 且换热系数为 5000 W/(m2·K)的条件下,稳态热仿真结果表明,两个 1 mm 厚 AlN 陶瓷 DBA 基板堆叠,芯片结温峰值降低 34℃,降幅将近 15%,表明双基板堆叠相对单个基板封装在热性能方面的提升。

图3 三导体双陶瓷层基板概念图和带有芯片的实物照片

类似于双基板堆叠,三导体双陶瓷层基板封装 (图3) 具有三个金属层和两个陶瓷层。采用 Sn-Au 高温焊料将基板连接到带有翅片的铜底板上,芯片焊盘和基板采用铝键合线连接。将硅凝胶灌入外壳封装并固化。


该基板可以从根本上有效降低回路电感,最大问题是附加陶瓷层(SiN)增加了散热热阻。但研究结果表明,该附加陶瓷层也仅使芯片结温升高了 2℃,影响几乎可以忽略。采用相同原理和结构封装的器件还有很多。

图4 (a) 铜带堆叠和(b) 铝带连接芯片和基板

图 4 所示为采用金属带进行芯片连接的封装。金属带连接增大了键合线的载流能力。图 5 所示为将芯片嵌入到焊接在 DBC 上的 PCB 板中,通过键合线将芯片电极连接到 PCB 板上。通过优化电流回路、驱动位置和栅极连接可以最小化寄生电感。

图5 PCB 板封装基本结构

上述器件在具体封装结构方面略有差异,但所采用的封装原理与传统键合线连接封装相同,这种封装形式决定了其单面散热的封装热特性,使得封装器件内部产生的热量几乎只能从芯片一侧的基板和底板传递,形成了单一的散热路径。


2.1.2 无键合线单面散热


取消键合线有助于改善器件封装寄生电感和封装可靠性。图 6所示的超紧凑高可靠性 SiC MOSFET 模块,取消键合线和底板,将芯片直接焊接到基板上,采用铜针取代铝键合线,同时在高导热 SiN 陶瓷上设计了类似于热扩散器的更厚铜块,具有更好的传热效果。

图6 PCB 板连接封装结构和层状电流设计

相比 Al2O3陶瓷基板的键合线结构,采用 Al2O3陶瓷的厚铜块封装模块结壳热阻降低 37%,采用 SiN 陶瓷的厚铜块封装模块结壳热阻降低 55%。同时该封装采用新型环氧树脂和银烧结技术,具有高达 200℃的高温运行能力。通过 PCB 板和 DBC 上铜层的层叠电流路径可抵消掉部分内部电感。


从封装结构上看,虽然取消了键合线,但芯片的连接方式没有改变,芯片通过铜针连接到 PCB 板,采用环氧树脂进行整体密封,这也使得器件无法通过 PCB 板散热,只能通过基板侧进行散热。

图7 SiC MOSFET/二极管PowerStep无键合线互连透视图

图 7 所示为被称作 PowerStep 的无键合线互连功率器件封装,适用于 600~1700 V 的器件封装。采用大面积薄金属板与芯片电极连接,金属板上刻有与芯片焊盘形状和尺寸相匹配的特征图案。取消 键合线使封装外形更薄,可有效降低电感。同时,省略了底板,降低了重量、体积、成本和封装的复杂性。


相比一次只能焊接一个点位的键合线连接,金属板可通过焊料、烧结膏或其他连接材料一次性连接到芯片焊盘上。通过改变导通路径上的几何形状,增大接触面积,有效降低了高压下导电路径的寄生电感和电阻。


该薄板可采用具有良好导电和导热性能的金属铜等制成,大的接触面积也有利于芯片热量的传导,提高散热能力。考虑到接触界面热膨胀系数的匹配性,可采用 CuMo 或 CuW 合金代替铜。金属板连接比相同电流下的键合线连接具有更低的焦耳热。



路过

雷人

握手

鲜花

鸡蛋