来源:内容节选自中信证券,谢谢。


功率半导体器件(Power Semiconductor Device) 又称为电力电子器件,是电力电子装置实现电能转换、电路控制的核心器件。 主要用途包括变频、整流、变压、功率放大、功率控制等,同时具有节能功效。功率半导体器件广泛应用于移动通讯、消费电子、新能源交通、轨道交通、 工业控制、 发电与配电等电力、电子领域,涵盖低、中、高各个功率层级。


功率半导体器件种类众多。 功率半导体根据载流子类型可分为双极型与单极型功率半导体。双极型功率半导体包括功率二极管、双极结型晶体管(Bipolar Junction Transistor,BJT)、电力晶体管(Giant Transistor, GTR)、晶闸管、 绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor, IGBT)等,单极型功率半导体包括功率 MOSFET、肖特基势垒功率二极管等。按照材料类型可以分为传统的硅基功率半导体器件以及宽禁带材料功率半导体器件。传统功率半导体器件基于硅基制造,而采用第三代半导体材料(如 SiC、 GaN)具有宽禁带特性,是新兴的半导体材料。

功率半导体的器件分类


功率半导体器件:二极管→晶闸管→硅基 MOSFET→硅基 IGBT。 功率二极管发明于20 世纪 50 年代, 起初用于工业和电力系统。 60-70 年代,以半控型晶闸管为代表的功率器件快速发展,晶闸管体积小、明显的节能功效引起广泛重视。 80 年代,晶闸管的电流容量已达 6000 安,阻断电压高达 6500 伏; 80 年代发展起来的硅基 MOSFET 工作频率达到兆赫级,同时功率器件正式进入电子应用时代。 


功率器件的演进史


硅基 IGBT 的出现实现了功率器件同时具备大功率化(6500V)与高频化(10-100kHz)。二十一世纪前后,将功率器件与集成电路集中在同一个芯片中,功率器件集成化使器件功能趋于完整。


不同功率半导体器件的特性


经历了那么多年的发展,衍生出了不同的半导体器件,而他们也都各自有各自的特性:


功率半导体器件的比较


(1)功率二极管: 最传统功率器件, 应用于工业、电子等领域


功率二极管是基础性功率器件,广泛应用于工业、电子等各个领域。功率二极管(Diode)是一种具有两个电极装置的电子元件,只允许电流由单一方向流过,同时无法对导通电流进行控制,属于不可控型器件。 二极管主要用于整流、开关、稳压、限幅、续流、检波等。 根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。


整流二极管示意图


(2)硅基 MOSFET: 高频化器件,应用领域拓展至 4C


硅基 MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)简称金氧半场效晶体管,高频化运行,耐压能力有限。1960 年由贝尔实验室 Bell Lab.的 D. Kahng 和 Martin Atalla 首次实作成功, 制造成本低廉、 整合度高、 频率可以达到上 MHz, 广泛使用在模拟电路与数字电路的场效晶体管, 具体有开关电源、镇流器、通信电源等高频领域,应用领域由二 极管的工业、电子等拓展到了四个新的领域, 即 4C :Compute,Communication,Consumer,Car。


功率 MOSFET 结构图


(3)硅基 IGBT:融合 BJT 和 MOSFET, 广泛应用于新能源汽车、光伏、轨道交通


IGBT 集 BJT 与 MOSFET 优点于一身, 1988 年以来已进展至第六代产品。IGBT(Insulated Gate Bipolar Transistor), 即绝缘栅双极型晶体管,是由 BJT(双极型三极管)和 MOSFET(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件。 IGBT 在开通过程中,大部分时间作为 MOSFET 运行,在断开期间, BJT 则增强 IGBT 的耐压性。自从 1988 年第一代 IGBT 产品问世以来,目前已经进展至第六代产品,性能方面有显著的提升,工艺线宽由 5 微米缩小至 0.3 微米,功率损耗则将为 1/3 左右,断态电压大幅提高近 10倍。


IGBT=MOSFET+BJY 结构图


600-1200V 的 IGBT 需求量最大, 1200V 以上未来需求强劲。 从应用领域看, IGBT 广泛应用于新能源汽车、电机、新能源发电、轨道交通等领域;从电压结构看,电压在 600-1200V的 IGBT 需求量最大,占市场份额 68.2%, 1200V 以上的 IGBT 应用在高铁、动车、汽车电

子及电力设备中, 伴随着轨道交通、再生能源、工业控制等行业市场在近几年内的高速成长,对更高电压应用的 IGBT 产品(1200V~6500V)提出了强烈的需求


2015 年全球 IGBT 市场应用结构(单位:百万美元)


IGBT 模块是新能源发电逆变器的关键器件。 太阳能电池阵列的直流输出电压经过电平转换和逆变器转变为交流电压,再经过低频滤波器得到 50Hz 的交流输出电压并入电网。逆变器是实现交流电转直流电的关键器件,而 IGBT 单元是逆变器和驱动电路的核心。选择IGBT 器件的基本准则是提高转换效率、降低系统散热片的尺寸、提高相同电路板上的电流密度。目前,市场上多家公司提供用于太阳能逆变器的功率器件,其中,包括 IR、英飞凌、ST、飞兆半导体、 Vishay、 Microsemi、东芝等公司。



IGBT 广泛地应用于新能源汽车的控制系统,包括主逆变器(main inverter)、辅助HV/LV DC-DC(auxiliary HV/LV DC-DC converter)、辅逆变器(Auxiliary loads)和电池充电器(On-board charger), 占整车成本近 10%, 占到充电桩成本的 20%。 在电动传动系统中,主逆变器负责控制电动机, 还用于捕获再生制动释放的能量并将此能量回馈给电池。辅助 HV-LV DC-DC 用于不同供电网络之间的能量转换,在电动汽车中系统辅助 HV-LVDC-DC 的作用是在低压子供电网和高压子供电网之间实现能量的双向流动。



辅助逆变器主要负责控制除了主电动机以外的其余电动机。电池充电器的作用是实现汽车电池快速高效充电, 而 PFC 电路通过纠正电流和电压的相位差提高功率因素,实现高效充电。 跟据 Hitachi,车用逆变器中 IGBT 需要工作在 650-700V,开关频率为 5-12kHz, IGBT 的转化效率在 90%以上,最大可以达到 95%。


英飞凌提供的混合动力汽车/电动汽车功率器件应用方案


IGBT 是动车、高铁等动力转换的核心器件, 占动车总成本的 1.25%左右。 和谐号 CRH3列车的牵引变流器将超高电流转化为强大的动力,运营时速达 350 公里/小时,每辆列车共装有 4 台变流器,每台变流器搭载了 32 个 IGBT 模块, 每个 IGBT 模块含 6 块 DCB,每块DCB 含有 4 个 IGBT 新芯片和 2 个二极管芯片,每个模块标称电流 600 安,可承受 6500伏高的电压。


总的来说,一辆 8 节编组动车上的 128 个 IGBT 模块为整个列车提供了 10 兆瓦的功率。 据中车株洲所报道,一个 IGBT 模块就高达一万多元,一辆 CRH3C 出厂价大约1.6 亿, IGBT 模块占动车总成本的 1.25%左右。 高铁电力机车需要 500 个 IGBT 模块,动车组需要超过 100 个 IGBT 模块,一节地铁需要 50~80 个 IGBT 模块, 每年中国高铁国外采购的 IGBT 模块数量达十万个以上, 金额超过 12 亿元人民币。


高铁动力结构图


步入第三代, SiC、 GaN 等有望占领高端应用


目前 Si 材料仍占主流,占据 95%以上半导体器件和 99%集成电路。 根据功率分立器件所使用的材料可分为三代。将硅、锗元素半导体材料称为第一代半导体材料;第二代半导体材料包括砷化镓(GaAs)等化合物半导体材料、 GaAsAl 等三元化合物半导体、 Ge-Si 等固溶体半导体、 非晶硅等玻璃半导体以及酞菁等有机半导体; 第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)为代表的宽禁带半导体材料。由于产业工艺成熟及生产成本低, 95%以上的的半导体器件和 99%以上的集成电路是用硅材料制作的,硅仍然是半导体材料的主体。


功率半导体硅基元器件、砷化镓元器件、 碳化硅元器件


相对于 Si 器件, SiC 功率器件具有三大优势: 


第一,高压特性。 SiC 器件是同等 Si 器件耐压的 10 倍,碳化硅肖特基管耐压可达 2400V,碳化硅场效应管耐压可达数万伏,且通态电阻并不很大。 


第二,高频、高效特性。 SiC 器件的工作频率一般是 Si 器件的 10 倍。 在PFC 电路中,使用碳化硅可使电路工作在 300kHz 以上,效率基本保持不变,而使用硅 FRD的电路在 100kHz 以上的效率急剧下降。随着工作频率的提高,电感等无源原件的体积相应减小,整个电路板的体积可下降 30%以上。 



路过

雷人

握手

鲜花

鸡蛋